
Recommending Heterogeneous Resources for Science Gateway Applications
based on Custom Templates Composition

Ronny Bazan Antequera, Prasad Calyam, Arjun Ankathatti Chandrashekara, Reshmi Mitra
University of Missouri-Columbia, USA

Email: {rcb553, aacwb} @mail.missouri.edu, {calyamp, mitrare}@missouri.edu

Abstract

Emerging interdisciplinary data-intensive science gateway applications in engineering fields (e.g., bioinformatics, cybermanufac-
turing) demand the use of high-performance computing resources. However, to mitigate operational costs and management efforts
for these science gateway applications, there is a need to effectively deploy them on federated heterogeneous resources managed
by external Cloud Service Providers (CSPs). In this paper, we present a novel methodology to deliver fast, automatic and flexible
resource provisioning services for such application-owners with limited expertise in composing and deploying suitable cloud ar-
chitectures. Our methodology features a Component Abstraction Model to implement intelligent resource ‘abstractions’ coupled
with ‘reusable’ hardware and software configuration in the form of “custom templates” to simplify heterogeneous resource man-
agement efforts. It also features a novel middleware that provides services via a set of recommendation schemes for a context-aware
requirement-collection questionnaire. Recommendations match the requirements to available resources and thus assist novice and
expert users to make relevant configuration selections with CSP collaboration. To evaluate our middleware, we study the impact
of user preferences in requirement collection, jobs execution and resource adaptation for a real-world manufacturing application
on Amazon Web Services and the GENI cloud platforms. Our experiment results show that our scheme improves the resource
recommendation accuracy in the manufacturing science gateway application by up to 21% compared to the existing schemes. We
also show the impact of custom templates knowledgebase maturity at the CSP side for handling novice and expert user preferences
in terms of the resource recommendation accuracy.

Keywords: federated cloud resources; component abstraction model; custom templates;
novice and expert user preferences; cloud resource recommendation scheme

1. Introduction

Data-intensive science gateway applications in fields such
as bioinformatics, climate modeling, and particle physics are
becoming increasingly popular. These science gateway appli-
cations present unique requirements in terms of deployment of
distributed heterogeneous infrastructure and use of advanced
cyberinfrastructure technologies/protocols such as high-speed
data transfer protocols, end-to-end virtualization, local/remote
computing, Software-defined Networking (SDN) with Open-
Flow support, Network Function Virtualization (NFV), end-to-
end performance monitoring [1], and federated identity & ac-
cess management [2]. In most cases, such resources are shared
among federated user sites and are handled as ‘component’ so-
lutions that can be combined for transforming a local applica-
tions (frequently at desktop scale) to a hybrid cloud application
(i.e., infrastructure composed of distributed/federated cloud re-
sources) [3].

Traditional infrastructure deployment approaches use a five-
step waterfall model [4] involving: sequential abstraction, anal-
ysis, component deployment, recursive benchmarking and in-
frastructure deployment steps. Such a tedious five-step approach
generally requires involvement of experts to accurately identify
the application requirements, compose feasible solutions, and

re-tune the components post-deployment to improve upon sub-
optimal outcomes. Alternatively, automation of such a water-
fall model through expert systems can be performed using suit-
able ‘abstractions’ of heterogeneous resource components and a
‘reusable’ solution model. The lack of abstraction and reusabil-
ity of configurations in the approaches makes provisioning of
heterogeneous resources for data-intensive applications quite
time-consuming and prone to guesswork. This subsequently
leads to sub-optimal and cost-prohibitive outcomes for data-
intensive application users and can impede wide-adoption of
dynamic distributed resource management.

There are existing infrastructure-level automated resource
deployment approaches that offer automation and reusability to
some extent. These solutions include: VMware Appliance [5]
(vApps) from VMware; National Science Foundation (NSF)
sponsored cloud Global Environment for Network Innovations
(GENI) RSpecs [6] using XML files; and Amazon Machine
Images [7] by Amazon Web Services (AWS). However, due
to their proprietary nature, they assume a homogeneous de-
ployment environment that features only their API (Application
Programming Interface) that hides the complexity, and thereby,
obviates the need for abstractions to facilitate heterogeneous
resource provisioning. There are also existing application level

Preprint submitted to Elsevier April 22, 2019

Figure 1: Abstraction of federated cloud infrastructure components to
compose solutions that integrate heterogeneous cloud resources.

approaches such as, VMware ThinApp, Citrix XenApp and Mi-
crosoft App-V that are limited in terms of platform and operat-
ing system independence. In addition, these technologies are
mostly targeted towards commercial use. Due to issues such
has portability and licensing, they are yet to gain wider ac-
ceptance within the data application owners and science gate-
way community. Thus, a suitable abstraction, virtualization,
and orchestration approach is needed to fully comprehend the
reusable heterogeneous distributed resource deployments for
data-intensive applications for science gateways.

In this paper, we build upon our recent prior work in [8]
in order to address the above limitations of abstraction efforts
and deployment approaches for heterogeneous distributed com-
puting infrastructures. More specifically, we present a novel
middleware approach shown in Figure 1, for integrating fed-
erated/distributed cloud resources to support data-intensive ap-
plication user needs. The goal of the design of our middle-
ware is to enable it to create data-intensive science gateway ap-
plication resource requirement ‘abstractions’ to foster pertinent
cloud resources recommendations, coupled with ‘reusable’ ap-
proaches and automated resource deployment to save time and
effort. Our middleware implements the Component Abstrac-
tion Model which is designed to abstract and group different
cloud resources into categories of heterogeneous resource com-
ponents through a corresponding Application Requirement Ab-
straction. It generates reusable, and extensible Custom Tem-
plates of components to fulfill the diverse data-intensive appli-
cation requirements. Our middleware builds upon existing tech-
nologies, and protocols and uses a “Custom Template Catalog”
for storage and reuse of these Custom Templates.

Our middleware features a Recommender system with a set
of recommender schemes that enable the reuse of existing cus-
tom templates. An offline initial recommender module improves

the user productivity by narrowing down cloud resource com-
position to the most appropriate options. In addition, an online
iterative recommender module regularly monitors the applica-
tion behavior, and dynamically provides automated resource
adaptions based on application demands. The adaptations can
be fine-grained changes to an existing configuration that in-
volves e.g., adjusting the virtual machine (VM) count. Alter-
nately, adaptations can be coarse-grained changes that involve
recommendation of a completely new custom template. Lastly,
the chosen template can be provided to a Resource Deployment
Engine that uses CSP-specific APIs, Docker technology [31]
(other frameworks such as Terraform engine [9] could be sub-
stituted) and automates the process for cloud resources deploy-
ment in a federated-distributed cloud environment.

We evaluate our middleware recommendation scheme with
simulated interactions and a real-world data-intensive case study
in the Advanced Manufacturing domain scope. We simulate
a series of user interactions for diverse applications require-
ments, considering ‘novice users’ (users who provide reduced
or incomplete information to the KIS) and ‘expert users’ (users
who are more aware of their data-intensive application require-
ments and provide more inputs to the KIS). Next, our evalu-
ation of the middleware implementation features a real-world
data-intensive manufacturing science gateway application with
computing workflow requirements involving a cluster of sys-
tems/nodes. Our experiment results demonstrate significant im-
provement for novice/expert users to effectively express their
data-intensive application requirements to the KIS, and subse-
quently access federated cloud resources that are automatically
deployed. This whole process reduces the resource provision-
ing time drastically and the guesswork in selecting appropriate
cloud resource allocations. We also show the benefits of using
dynamic scaling knowledge to motivate application adaptations
in terms of performance, agility and cost factors.

For our experiment scenarios, we use the Amazon Web Ser-
vices (AWS) and GENI cloud [6] platforms as part of a public-
private cloud testbed with distributed heterogeneous resources
that can be discovered and configured by using the geni-lib,
a GENI API capability. Through extensive simulations, we
quantify the accuracy metric in terms of the percentage of satis-
fied user requests for a set of novice/expert user requirements.
Accuracy is measured with respect to the increase in the amount
of missing infrastructure requirement parameters within user
preferences, and is also based on the catalog knowledgebase
maturity. The simulation results demonstrate that the increase
in catalog size results in an increase of the search space com-
plexity, and consequently further hinders the accuracy of the
resource recommendation.

The reminder of the paper is organized as follows: Section 2
presents related works. Section 3, describes our Component
Abstraction Model. In Section 4, we present our Recommender
Algorithm. In Section 5, we present details of our middleware
implementation and resource deployment methodology. Sec-
tion 6 discusses the performance evaluation and Section 7 con-
cludes the paper.

2

2. Related Work

2.1. Expression and abstraction of user requirements

It is important to identify and abstract application require-
ments, as well as an available pool of resources to effectively
provision infrastructure configurations. Hence, our literature
review commences with the study of application requirement
abstraction for infrastructure configurations to effectively pro-
vision resources. The authors in [10] divide the requirements
into independent components and also use component abstrac-
tion to represent the knowledge. They break down a given prob-
lem by using heuristic rules in order to plan at the component
level. Planning is done within each components to select po-
tential and more suitable options and across the components to
finally have a solution which combines options from every com-
ponent. In [11], the authors use abstractions for component-
based software architectures by estimating the assembly of re-
usable software components. The abstractions also involve mak-
ing a forecast on software properties to an associated architec-
ture by using graph-theoretic approaches. In [12], authors ap-
ply abstractions to check large asynchronous designs based on
component abstraction verification in isolation. Similarly, au-
thors in [13] present different software engineering theorems
for a hierarchical abstraction model pertaining to knowledge
development in the brain.

Existing abstraction models and methodologies can be lever-
aged as initial approaches for application requirement and cloud
infrastructure abstraction of distributed heterogeneous resource,
an area which we found is still quite under-explored. Our prior
work [8] adapted the idea of component level abstraction to
abstract distributed heterogeneous resources by organizing the
available cloud resources into different components such as net-
working component, storage component, computation compo-
nent etc. as shown in Figure 1. Thus, the decisions are made
within and across the components, which makes resource plan-
ning and composition relatively easy and more efficient. In this
paper, we propose a dynamic and context aware questionnaire
which is an improvement over a static set of questions for all
the application users, irrespective of their understanding about
the CSP infrastructure capabilities. Our questionnaire approach
is driven by pre-defined rules provided by a domain expert, and
can help in the requirements collection for both novice and ex-
pert users.

2.2. Cloud service matching and recommendation

In recent times, a considerable amount of research work has
been done on the cloud service matching problem and the re-
lated resource recommendation problem. Given the user re-
quirements, the service matching algorithms should find the
most suitable cloud resources from multiple CSPs. The most
suitable resource is based on the user’s importance of the func-
tional requirements (e.g., CPU, memory, storage capacity, net-
work bandwidth) or the non-functional requirements (e.g., ser-
vice response time, frame rate, cost) of the resources. Although
there are many available CSPs, application-owners with limited

expertise find it challenging to compose and deploy their data-
intensive science gateway applications on suitable cloud archi-
tectures. Works such as [14] – [19] provide guidance about
helping a user specify the functional requirements such as e.g.,
VM-type for the desired QoS.

Filtering or comparing the resources based on a given set of
functional and/or non-functional requirements is a challenging
problem, and prior research efforts formulate this as a multi-
criteria decision making (MCDM) problem. For example, au-
thors in [20] propose a recommendation system in the form of
a vector with its elements consisting of cost, performance, and
mobility generated for available resources. This is matched to
the vector denoting user requirements, with the goal of finding
resource similarity. In [21], authors have developed a math-
ematical model to map user requirements onto the cloud re-
sources considering e.g., cost, pricing policy, performance; they
rank them according to the best resources for a given user’s
specification. Authors in [22] developed a comprehensive user
interface for cloud service selection based on multiple crite-
ria and considered user preferences (i.e., cost, QoS attributes).
However, their approach lacks a deployment engine and func-
tions as the equivalent of an e-commerce website for a CSP. In
comparison, our work considers a set of recommender schemes
that account for several variables such as cost, QoS and feature
importance that should be taken into account as they need to be
customized depending on user preferences as well as applica-
tion resource demands.

All of the above works address the problem of finding, se-
lecting or comparing the available resources of a single CSP
e.g., they consider only single VM or just the storage or com-
pute resource dimensions of a CSP, and rank them according to
users QoS and/or functional requirements. In real world sce-
narios, user requirements are not just limited to adaptations that
involve changes across a single VM or a related storage service.
Instead, they need a collection of heterogeneous resources that
can dynamically accommodate application demands and yet,
operate within the cost and agility offerings of the CSP. There
are few works which address the problem of collecting the user
requirements in order to create a comprehensive custom tem-
plate knowledgebase, and deploy the selected resources on rel-
evant cloud platform architectures.

AWS Cloud Formation [23] from Amazon describes the
cloud resources using templates. Similarly, Cisco UCS Di-
rector [24], a Unified Infrastructure Management Middleware,
also provisions compute, network and storage resources auto-
matically in local and remote locations using a similar template
scheme viz., ‘workflows’. Although both Cisco and Amazon
abstract the user requests with the concept of templates, how-
ever they are proprietary in nature and are not portable. In con-
trast, we build templates according to Topology and Orchestra-
tion Specification for Cloud Applications (TOSCA) [25] stan-
dards. TOSCA is an OASIS standard language to describe a
topology of cloud based web services, their components, re-
lationships, and the processes that manage them. It includes
specifications to describe processes that create or modify web
services independent of the cloud service provider. A cloud
provider for instance, could use TOSCA to define and com-

3

pose a specific cloud service. TOSCA compliance from a cloud
provider perspective helps users to standardize how application
deployments are configured with dependency/resource infor-
mation in a cloud agnostic as well as portable manner. This en-
ables the TOSCA templates to describe cloud resource config-
urations that involve multi-cloud resource specifications. The
notable issue in the existing tools is that they lack a recommen-
dation system and require the user to be aware of CSP offer-
ings. Our solution approach features custom templates, which
are not just limited to a single VM with software installation
details, but contain specifications for a cloud architecture and
related resources configuration in accordance with the TOSCA
standards.

QuARAMRecommender [26] that is closely related to our
work uses case-based reasoning for resource recommendation
to suggest the CSP and VM type. It uses available cloud re-
sources, service information and a knowledgebase to store pre-
viously recommended solutions. The knowledgebase has a re-
quirements part and a solution part. For any new user request,
the knowledgebase is searched using the k-Nearest Neigbhors
(KNN) algorithm to get the solutions with similar requirements.
In addition, there propose an adaptation module which modifies
the fetched solution to better suit the new (user) request. Their
implementation also has monitoring module which checks for
any SLA violations. If there is one, a corresponding template
in the Knowledgebase is given low priority and this decreases
the chances of its retrieval in the future. Although, they use
templates and a knowledgebase which stores the previous solu-
tion(s), the stored information is only limited to a VM type and
a CSP recommendation. The template concept is also focused
only on the configuration of the software packages that need to
be installed on a VM. Furthermore, we extend the work in [26]
by storing the templates in a Catalog (i.e., a Knowledgebase) for
its reuse and also a recommender system which finds the suit-
able architecture for science gateway application on available
cloud platforms. The user requirement collection step is very
important and we have developed it as a rule based interaction
questionnaire to obtain the user preferences. Our requirement
collection is not restricted to a static set of questions, instead
it flows dynamically in an interactive manner where answers to
current set of questions trigger the selection of the next set of
questions.

2.3. Automated resource provisioning frameworks

Deployment services should be independent of the CSP to
support portability. There are few technologies and studies that
focus on deployment of application on cloud platforms. Au-
thors in [27] present a web framework which extracts the ar-
bitrary program of an application from GitHub and deploys it
in a user-desired cloud. The toolset converts the application to
be deployed on the cloud into virtual machine images. How-
ever, this solution is restricted in its ability to execute tasks in
standalone systems and is not generalized to all kinds of ap-
plications. In [28], authors describe an architecture composed
of four layers (Cloud infrastructure, Abstraction, Orchestration,
and Design) that enables automated deployment of cloud ser-
vices. It has templates that encapsulate resource requirements

and a deployment layer which provisions the resources described
in the template on multi-cloud platform. However, similar to
AWS Cloud formation and Cisco UCS Director, this is a de-
scriptive way of collecting user requirements where the user
has to be aware of the cloud resources and services available. In
contrast, our work frees the user from such a situation, and our
approach extracts the application requirements using context-
awareness and uses this information to recommend suitable tem-
plates on available cloud platforms.

In [29], the authors present MetaConfig system, a tool sim-
ilar to Puppet [30] that integrates configuration management,
virtual machine allocation, and bootstrapping for virtual ma-
chine allocation. The MetaConfig system is flexible enough to
include unexpected changes and scalability requirements, how-
ever, it does not consider configuration customization before the
system is deployed. Our work also considers container technol-
ogy such as Docker [31] to conduct reproducible experiments
for data-intensive applications. Many works such as [32, 33]
have studied the benefits of using Docker for HPC computing
and scientific workflow deployments, and have found it to be
a feasible solution for workflow reproducibility in cloud plat-
forms for science gateway applications [34]. By “dockerizing”
the whole application, it is relatively easy to move to different
environments in cases of CSP infrastructure changes.

Some studies on middleware to provision elastic resources
for cloud application have been developed such as Celar [35]
that allows users to select and deploy certain compute resources
in different cloud platforms through API calls using abstraction
libraries (such as Apache Libcloud [36], jclouds [37], delta-
cloud [38]). Tools such as Celar requires code to describe the
infrastructure using libraries. Such an approach is not user
friendly and moreover those generalized libraries are not ma-
ture enough to handle all the resource provisioning require-
ments. Our middleware can be integrated into emerging hetero-
geneous distributed computing infrastructures and can be ex-
tended to complement other frameworks such as Cloudify [39]
that choose to adopt related standards such as OASIS TOSCA [25].

3. Component Abstraction Model

In this section, we present the details of our component
abstraction model solution. Our aim is to transform the re-
source performance expectations of data-intensive applications’
(through intelligent requirements collection) into reusable re-
source recommendation templates. For this, we develop a Cus-
tom Template Cycle shown in Figure. 1 that involves three stages:
Collection, Composition and Consumption. Figure 2 presents
the Custom Template Life Cycle stages and the intermediate
steps involved. The life cycle stages are, as follows:

• Collection: In this stage, we collect and abstract the data-
intensive application requirements and categorize them
into different resources domains.

• Composition: Depending on the requirement of the data-
intensive application, we recommend either existing sim-
ilar custom template solutions from pre-existing templates
or compose new custom templates.

4

Figure 2: Custom Template Life Cycle. Our middleware solution presents three main stages: (a) Collection, that abstracts data-intensive application requirements.
(b) Composition, that recommends template solutions based on the comparison of requirements with templates stored in a catalog or by the creation of new

templates, and (c) Consumption, that enables cloud resource deployment automation.

Figure 3: Rule based questionnaire generation, where answers to the previous or initial set of questions determine the next set of question

• Consumption: Candidate custom templates configura-
tions are presented to the data-intensive application user
who is a novice or an expert. Upon selection, the resource
allocation process automatically deploys cloud resources
along with required software for user access.

3.1. Collection

This is the first step where we collect and abstract user
requirements through the Knowledge Interface System (KIS),
which is a web based questionnaire portal. Traditionally, the
requirement collection is done through one-to-one interviews
and meetings between users and cloud engineers. This website
mimics the interaction scenarios for infrastructure requirement
elicitation process with domain expert that correspond to first
set of steps in Figure 2. Our questions can be organized into
sections for example: General information, Networking, Stor-
age, Computation and Software requirements. Each section
gathers specific domain information that helps to understand
application infrastructure and software needs and recommends
adequate solutions that might range from virtual machines with
standard OS capabilities to distributed resources over federated
CSP software that needs heterogeneous cloud resources.

The main function of the KIS is to collect user require-
ments for their applications and to help novice users to choose

compatible resources. The initial set of questions aim to col-
lect applications’ high-level requirements and preferences to
understand resource priority needs. This collected informa-
tion not only helps to generate next set of questions but also
helps the KIS to pre-populate relevant fields with default val-
ues. However, users (novice and expert) can always change the
pre-populated values to personalize their solution.

The pre-population of fields assumes that the KIS design
has a deep understanding of the underlying application com-
munity knowledge (e.g., in advanced manufacturing and bioin-
formatics). For instance, the KIS design requires close collab-
oration with the application community, and a community do-
main expert needs to input pertinent rules that are essential to
select the most adequate answer. This input can also be inputs
from an expert user during previous interactions with the KIS,
and thus we can provide minimum functional resource compat-
ibility for a given set of application requirements within a user
community. The KIS additionally allows users to reuse previ-
ously deployed templates (select or upload template) in order to
customize them and skip the questionnaire process.

It is possible for the KIS robustness in the questionnaire
generation to be affected by wrong or incomplete information
especially given by novice users. This is indeed a challeng-
ing problem to detect and cope; the extent of robustness in our
KIS is based on the rules defined by an application expert in

5

our policy database (explained later in Section 3.2.3) used for
the user requirements collection. For every question, the user
has the option to choose a “Not Sure” response, choose de-
fault (pre-populated) values obtained from the catalog, or even
just leave the answer field blank. When user intentionally gives
wrong requirements, the deployment will result in either over-
or under-provisioning of the resources, which in turn could lead
to increased application cost or decreased application perfor-
mance, respectively. To guide the user in such drastic cases,
our KIS approach relies on two strategies: First, novice users,
who are more likely to give incomplete/wrong specifications,
are provided with more questions and guided documentation
(e.g., terms definition, default parameters) based on their re-
sponses in terms of deployment options to compensate for their
lack of knowledge. Secondly, major discrepancies in user re-
quirements will be detected by the resource monitoring engine
(as detailed later in Section 4.3) from the utilization data and its
correlation with the original user requirements provided to the
KIS. In such cases, the short-term adaptation of the resource
provisioning is performed during an online recommendation
stage facilitated via the KIS.

Additional structures that map the application requirements
and the corresponding resource deployment are: Application
Requirement Identifier (ARI), Resource Space (RSpace) and
Macro Operators (MacOps), whose structure details are sum-
marized below based on details from our prior work [8].

3.1.1. Application Requirement Identifier
When users finalize their interactions with the KIS, the col-

lected data is automatically translated into an Application Re-
quirement Identifier (ARI) structure. An ARI structure repre-
sents the meta-information of an application’s resource require-
ments containing a vector consisting of cloud resources Fea-
tures and corresponding Preconditions that satisfy the deploy-
ment of the application. A typical ARI structure has Fi that
represents required resource feature (i.e., Bandwidth, Storage
Size, RAM size) and Pi represents the corresponding required
precondition (i.e., 20 Mbps bandwidth, 20 GB HDD storage, 8
GB RAM). A single or multiple such Fi−Pi pair/s (i ∈ I, where
I is the set of required resources, and I = |I| is the number of
elements in I) that may belong to any new user application Ak.
Satisfying an application’s resource requirements is subjected
to the successful fulfillment of all the features’ preconditions.

3.1.2. Resource Space
The collected data is then compared with the cloud resource

components called Resource Space (RSpace). The components
within the RSpace are categorized into domains, i.e., VPN (vir-
tual private network) and network bandwidth resources belong
to the overall Network Connectivity domain and number of
CPU cores, RAM size belong to the overall Computation do-
main. We define D as the set of all cloud resource domains
where D={D1, D2, ..., DN}, and N is the number of domain cat-
egories the cloud resources are divided into N=|D|. Each such
domain consists of a different number of cloud resources as fol-
lows:

D1 = {R1
1, · · · ,R

1
A}where A is the no. of resources in D1

D2 = {R2
1, · · · ,R

2
B}where B is the no. of resources in D2

...

DN = {RN
1 , · · · ,R

N
N}where N is the no. of resources in DN

Each such resource consists of one or many resource specifica-
tions and their corresponding constraints, which define the per-
formance bounds of the respective resources and the associated
cost. For simplicity, we are not showing cost associated with
the resource in the representation shown below. The RSpace
data structure is represented as:

R1
1 = {(S

1
11,C

1
11), · · · , (S 1

1A,C
1
1A)}

R1
2 = {(S

2
11,C

2
11), · · · , (S 2

1B,C
2
1B)}

...

R1
A = {(S

A
11,C

A
11), · · · , (S A

1N ,C
A
1N)}

where Rp
m denotes p-th resource of the m-th domain. S p

mn and
Cp

mn denote n-th specification, and constraint respectively of the
p-th resource belonging to the m-th domain, whereA to N are
the number of constraints in R1

1 to R1
A respectively. Such a for-

malization maintains the uniqueness of each domain, resource,
constraint and its corresponding resource cost.

3.1.3. Macro Operators
The output of the Collections stage is referred to as the

Macro Operators (MacOps) data structure, which is a set of can-
didate cloud resources that could satisfy data-intensive applica-
tion requirements. Depending on the resource specifications,
and constraints, MacOps are constructed from a mapping of a
feature in ARI to one or many resources in the corresponding
domain D, resource couples in RSpace and are represented as:

f : (Fl, Pl) 7→ (Dk,Rk
j) (1)

where l ∈ I, k ∈ D, and j ∈ {Ā|B̄| · · · |N̄}. Here Ā denotes the set
with A resources. Equation (1) formulates the process of the
ARI features translating into domains and the corresponding
ARI preconditions along with RSpace resource specifications
and constraints being mapped into one or multiple resources
in that domain, forming one or multiple (Domain, Resource)
pairs. One limiting criteria for such a mapping is that the to-
tal number of l’s should be equal to the total number of k’s,
i.e., each feature in an ARI maps to one and only one domain
in RSpace. However, no such restrictions apply for a number
of resources within the domain. The corresponding ARI pre-
conditions are added to the domain-resource pairs forming Ma-
cOps as (Domain,Resource, Precondition,Cost) 4-tuples. A
MacOps representation corresponds to an ARI with Feature

6

and Precondition parameters. As stated earlier, a single (Fea-
ture, Precondition) tuple in ARI can lead to multiple Resources
in MacOps belonging to the same domain.

3.2. Composition

Initially, the (Resource, Precondition) pair of the generated
MacOps needs to be compared with existing custom templates
configurations residing in the catalog. However, if there is no
match, a new custom template needs to be created consider-
ing user PAC preferences (performance, agility, cost) and using
all possible combinations of MacOps (a set of candidate cloud
resources that could satisfy data intensive application require-
ments). This new template will then be stored in a knowledge-
base. A Multi Criteria Decision Making algorithm is used in
composing a solution in order to create a template or to select
the matching templates from the knowledgebase considering
user preferences in the form of PAC factors. This process is
done through our recommender scheme that chooses the best
of the candidate solutions. The different structures presented in
the composition stage are:

3.2.1. Custom Template
One or many custom template configurations can be cre-

ated for a given application depending on the corresponding
MacOps results. Each custom template is a combination of 5-
tuple (Domain, Resource, Specification Constraint, Precondi-
tion and cost). Figure. 8 shows an excerpt of the custom tem-
plate YAML file for a real use case application (WheelSim) that
contains a sample description of cloud resources and their con-
figurations. Each template is also associated with 4 different
kinds of meta-data. The four meta-data of a template are: (i)
requirement to which the custom template is recommended, (ii)
PAC factors given by the user for a specific application require-
ment, (iii) software components that need to be installed, and
(iv) resource utilization data to be collected in a deployment.
Such a meta-data set can information a CSP on the popularity
of certain templates, which in turn can guide the design of our
recommenders.

3.2.2. Catalog
As the new templates are created they are stored in a catalog

for future use. If for a user requirement there exists a template
in the catalog which satisfies the application requirement, then
it might be chosen by our recommender scheme as a candidate.
Initially, the catalog will have few templates generated for the
different application requirements. However, over the time the
catalog will have critical mass with new custom templates upon
deployment of new resources.

3.2.3. Policy Database
Policy database or Rule base, is nothing but the pre-defined

set of rules created by the domain expert which drive the ques-
tionnaire. The rules are defined for both generation of next set
of questions after an initial set of questions and as well as to pre-
populate the questions in the questionnaire so as to help novice
user. These rules initially are created based on the previous

Figure 4: TOSCA compliant Custom template YAML configuration excerpt
describing the resource requirements for the WheelSim application

deployment of diverse data-intensive applications that required
heterogeneous resources, as well as logical rules that guarantee
compatibility and functionality of cloud resources.

3.3. Consumption
The last stage of the custom template life cycle focuses on

the resource deployment. Once the custom template configura-
tions are generated or retrieved from the catalog for a particu-
lar application’s requirement, the configurations (along with the
cost) are presented to the end user. Three different templates
are selected for the user (‘green’, ‘red’ and ‘gold’). We con-
sider the closest solution to the user requirement as the ‘green
template’, the template that presents lower cost as the ‘red tem-
plate’ and the template with more resources for a certain feature
(i.e., memory) based on user preference as the ‘gold template’.
This preference is explicitly selected by the user during the KIS
interactions.

7

Figure 5: KNN algorithm to recommend templates from Catalog or compose a
solution from RSpace guided by policy database.

Once the user chooses a particular template, correspond-
ing infrastructure resources are automatically deployed and cre-
dentials for infrastructure interaction are available to the user.
The deployment process utilizes the APIs for different CSPs
and Docker container technologies such as ‘Docker Hub’ for
software deployment. Once the infrastructure is deployed, a
monitoring manager verifies the deployment and then collects
the information about user account creation, IP configuration,
user privileges granted, customized software and availability
and network connectivity. This data along with the application
specification is stored and is available as part of the template
meta-data within the catalog. For this work, we use a simple
cost per time-unit model and investigations on a more sophisti-
cated cost model are beyond the scope of this paper.

4. Recommendation Scheme

4.1. Overview
Our middleware considers two different levels of recom-

mendations: offline initial recommendation and online itera-
tive recommendation. First, the offline initial recommendation
is enabled in the beginning when the user deploys a new sci-
ence gateway application setup on a cloud platform. The user
interacts with the KIS to provide the application requirements
including PAC factor preferences as explained in the previous
section. Once the requirements are confirmed by the user, the
recommender matches those requirements with the Catalog or
RSpace to provide initial (solution) templates. This first level
primarily depends on the user response to the questionnaire.

The second online iterative recommendation level is en-
abled after the application is deployed and is initiated when

it shows signs of sub par performance relating to application
demands. Most likely in such cases, the application requires
different quantity and type of cloud resources from the initial
request as the resources are not suited as initially expected.
For example, variation in the application behavior leads to sig-
nificant modification in a particular cloud resource utilization.
Hence, this triggers notable changes based on data that has
been collected through resource monitoring. Once the data is
collected and analyzed the recommender will suggest possible
changes to adapt the current architecture or will suggest a mi-
gration to a different CSP in order to satisfy user requirements.
A graphic representation of our offline, online recommendation
is shown in Figure 5, and details of our offline and online rec-
ommenders are presented in the following subsections.

4.2. Offline Initial Recommendation

In this section, we present details of our template recom-
mendation algorithm that finds the most closely matching tem-
plates for a given user’s requirement. After considering dif-
ferent existing classification algorithms for template classifi-
cation and matching prediction, we selected the popular KNN
scheme due to its simplistic as well as effective nature for our
purposes [42]. Our algorithm extends the k-Nearest Neighbors
(KNN) algorithm to find the three most closely related tem-
plates (i.e., ‘green’, ‘red’ and ‘gold’) in the catalog as shown
in the Algorithm 1. Preferred dimension (pDimension) input
is explicitly defined by users through the KIS and it is used to
prioritize resource requirement during template selection pro-
cess. From the MacOps, we construct a requirement vector V
(reqVector) having (r1,r2,r3,....,rn) where ri is the pre-condition
for each resource in network, storage and computation domain.

The recommender system uses three different knowledge-
base as shown in Figure 5. They are listed as RSpace - which
is available pool of resources, Catalog - the templates stored
in repository and Policy Database - which has rules to resolve
conflicts or ties when there are two similar templates available
for a requirements. Using the requirement vector constructed
from the MacOps, KNN tries to find templates from the cat-
alog. The algorithm first, calculates the distance between re-
qVector and templates in catalog and fetches the templates with
distance less than the threshold. Following this, the reqVector
is compared with n-dimensional vector with Ri components ∈
RSpace where Ri contains: No. of Cores, RAM, Storage and
Bandwidth, and so on. Then, the distance between Ri and re-
qVector is calculated using the formula 3 for Ri ∈ RSpace.

Di = w ∗
j=n∑
j=1

V j ∗ abs(Ri, j − V j)+

w ∗ V4 ∗ max(0,Ri j − V j).

(2)

The weights in the above equation are determined by col-
lecting preferences from the user and by using the Analytical
Hierarchy Process described in Section 2. The weight factor w
is used to scale the distance. Note that multiplying each term
by V gives more weight to the distance in the dimension which

8

Algorithm 1: Offline template recommendation
1 function

Decision(MacOp[1..m], catalog[1..n], pDimension, reqVector)
2 //set the threshold distance
3 D← 2;
4 //filter templates from catalog whose distance from reqVector is less than

threshold
5 //calculate templates distance to reqVector
6 foreach t in f do
7 tList← distance(t, reqVector, pDimension);
8 end
9 //filter k number of candidate templates

10 candidateList← nearestNeighbors(D, tList, reqVector);
11 if candidateList is not empty then
12 //AHP Multi-Criteria decision making algorithm to choose - RED,

GOLD and GREEN from the candidateList
13 //select template with cost as objective
14 RED← ahp(candidateList, cost);
15 //Select template with both cost and performance as objective
16 GOLD← ahp(candidateList, cost);
17 //select template with performance as objective
18 GREEN← ahp(candidateList, per f ormance);
19 return RED, GOLD, GREEN else
20 //Generate possible candidates combination of MacOp
21 newTemplates← MacOpComb(MacOp);
22 //AHP algorithm to choose RED, GOLD and GREEN from

generated templates
23 RED← ahp(newTemplates, cost);
24 GOLD← ahp(newTemplates, cost, per f ormance);
25 GREEN← ahp(newTemplates, per f ormance);
26 //Add these newly created templates to catalog
27 catalog← catalog + (RED+GOLD+GREEN);
28 return RED, GOLD, GREEN
29 end
30 end
31 end

is rated highest by the user. This dimension is further referred
to as the Preferred Dimension.

To streamline the process of matching the user preferences
with the appropriate templates, we are classifying them into
RED, GOLD and GREEN using a simple multi-criteria deci-
sion making algorithm. For performance as objective function,
users can select the GREEN option, RED for cost, and GOLD
for both performance and cost. If there are no templates in the
catalog, then the algorithm composes a new solution. It again
uses KNN with reqVector and RSpace to select different re-
sources from the available resource pool. The fetched resources
are again fed to a multi-criteria decision making algorithm to
compose three templates i.e., RED, GOLD and GREEN. Fi-
nally, these will be stored in catalog and are presented as new
recommendation options to the user.

4.3. Online Iterative Recommendation

We allow provisioned federated resources to be adapted and
refined automatically after the previous phase using a novel on-
line recommendation scheme shown in the Algorithm 2. Af-
ter the initial recommendation and deployment, the monitoring
engine starts collecting resource utilization data of all the re-
sources in the deployed template. The online recommendation
can force the system to operate with the existing template VM
configuration or suggest modifications based on fine-grained or
coarse-grained considerations.

There are three possible scenarios under consideration in
our approach. First scenario: fine-grained control, if there is
no past history of scaling or (performance) symptoms of slight

Algorithm 2: Online resource adaptation
1 function Adaptation(tIn f o,monitoringData, policyDatabase)
2 //Adaptation algorithm is given current template info, monitoring data

and user defined scaling rules if any
3 //Check if user defined scaling rules are present
4 if tInfo.scalingRules == True then
5 //Read user defined threshold from template info
6 uPerf← tIn f o.upperPer f ormanceThreshold;
7 uTimeLimit← tIn f o.upperT imeThreshold;
8 end
9 while True do

10 //Check if current performance is more than the threshold
11 if (currentPerf > uPerf) and (cumulativeTime > uTimeLimit) then
12 if tInfo.scalingRules == True then
13 //Case a: add or remove VM instances based on the rules
14 addOrRemoveResource(newTInfo);
15 end
16 if isScalingUpperLimit == True then
17 //Case b: change the VM type based on the policy

database changeV MType(tIn f o, policyDatabase);
18 end
19 if isMigrationPoint == Ture then
20 //Case c: get new reocmmendation Obtain new template

from the Decision Engine. The Decision Engine will
get user confirmation

21 newTInfo←
getNewRecommendation(tIn f o, policyDatabase);

22 //backup data and app from the old template
23 bkpDataAndApp(tInfo);
24 //migrate the application to new template
25 migrate(tInfo, newTInfo);
26 //kill old resources
27 deprovision(tIn f o);
28 end
29 //update the scalingUpperLimit flag, set it to true if maximum

number of VMs has been added
30 update(scalingU pperLimit);
31 //update the migrationPoint flag, set it to true if change in VM

type is done more than 3 times and still no improvement in
the performance

32 update(migrationPoint);
33 //Update user performance and thresholds
34 uPerf← newT In f o.upperPer f ormanceThreshold;
35 uTimeLimit← newT In f o.upperT imeThreshold;
36 end
37 end
38 end

deviation from the acceptable user preference after scaling, then
the decision engine will send the information to the deployment
engine to change the number of VMs as fine-grained modifica-
tion. Second scenario: semi-coarse-grained control, if there
was past VM scaling history and yet the performance of the ap-
plication continues to remain unacceptable, the decision engine
will suggest to the user to change the VM type as semi-coarse-
grained modification. If user accepts the newly recommended
solution, then the decision engine again contacts the deploy-
ment manager to implement them accordingly.

We remark that the above two scenarios correspond to ‘flex
points’ that are short-term in nature as considered similarly in [28].
The resource adaptation is influenced by application-specific
adaptation rules for ‘scale-up/down’ or ‘scale out/in’ of cloud
resources in a manner that is compliant with TOSCA standards.
Third scenario: coarse-grained control, if there are major per-
formance gaps in spite of the past history of modifications from
the second scenario, then the adaptation triggers coarse-grained
modifications. In this case, the necessary adaptation corresponds
to a ‘rebuild point’ that is part of a long-term adaption plan,
where we suppose that the adaptation will require a completely

9

new custom template with a drastically new cloud architecture
to meet application requirements. Correspondingly, the user
is encouraged to interact with the KIS questionnaire with a
clean-slate set of requirements, and the recommendation engine
searches for a new custom template in the catalog that has rel-
atively much higher capacity resources with a different cloud
architecture. Upon user approval, the recommendation engine
contacts the migration engine and with the help of deployment
engine, it automates the reserving new resources and applica-
tion setup transfer from the previous template. This above de-
scribed process is iterated till the performance is met within sat-
isfactory limit simultaneously accompanied by systematic close
down of prior allocated resources.

Figure 6: System architecture diagram for application requirements abstraction
and hybrid cloud resource deployment using custom template middleware.

5. Application Workflow Integration

5.1. Application Architecture and Implementation Design
The middleware is developed using Java Struts 2 web frame-

work. For the front-end user interface, JSP/JavaScript and JQuery
are used and entire application logic is written in Java. We use
the MySQL relational database to store the abstracted cloud
model (RSpace). From an architectural point of view, provi-
sioning cloud services involves identifying cloud resources re-
quired for the user requirements, deploying infrastructure in the
selected CSP and installing and configuring any software that
user needs in the deployed federated/distributed resources. The
last step i.e installing and configuring software is done by using
Docker container that allows software deployment on a variety
of platforms without being constrained to software dependen-
cies. We have made the portal code and recommender scripts
along with data structures, RSpace data and GENI configura-
tions openly available at [40].

Figure 6 shows the middleware architecture diagram (di-
vided into three layers) to automate application requirements
abstraction and federated cloud resources deployment. In the
‘Application Requirement & Abstraction Layer’, users interact
with the middleware through the KIS user interface to iden-
tify the application requirements. This layer also generates ARI
from the user input captured by the KIS and it is passed to the
’Resource Provisioning & Deployment Layer’ where the ARI is
compared with the RSpace resulting in the creation of MacOps.
The MacOps are used by the ‘Resource Recommender’ module
to create/reuse custom templates and catalog these templates.
Once a user selects a particular custom template, resources will
be automatically provisioned through the ‘Resource Deploy-
ment Module’. The ‘Infrastructure Layer’ abstracts the resources
from different CSPs and calls the correct API to interact with
a specific CSP. Infrastructure Layer receives the template to be
deployed from resource provisioning and deployment layer and
calls the relevant APIs to allocate resources on corresponding
CSP infrastructure. The ‘Monitoring Service’ verifies that the
resources are deployed successfully. All the inter-process com-
munication between different layers is implemented via REST-
ful web services.

Our ‘Resource Deployment Module’ integration with dif-
ferent cloud providers occurs at two levels. A user-selected cus-
tom template is presented to the ‘Resource Deployment Mod-
ule’ in a TOSCA compliant format. This module then extracts
relevant implementation information from the template (such
as e.g., the cloud service provider, type of the resources and its
specifications) and interacts with the infrastructure layer com-
ponents via their APIs. Given that our cloud template recom-
mendation considers heterogeneous resources, we needed to
have our ‘Resource Deployment Module’ to be compatible with
multiple cloud providers. In order to add a new cloud service
provider to our middleware, three different kinds of informa-
tion needs to be added in our knowledgebase. First, we have to
update the RSpace data structure, which has information about
all available cloud resources from the cloud service provider
that are relevant to an application community. Secondly, we
update the policy database with pricing information of various
resources and rules that are essential for the composition step
of the custom template lifecycle (shown earlier in Figure 2).
Thirdly, we update our ‘Resource Deployment Module’ to use
the cloud provider’s specific APIs to deploy and manage re-
sources once a custom template solution is chosen by a user
for deployment in the consumption step of the custom template
lifecycle.

A major challenge in our implementation for using multiple
cloud providers is to be up-to-date with the dynamism in the
cloud provider APIs and the inherent sustainability issues han-
dling legacy features. Owing to our use of the catalog knowl-
edgebase, expert users successfully creating custom templates
will foster novice users to adopt more latest features/capabilities
offered by cloud providers. Specifically, in our implementation
we use Amazon AWS Java cloud API and the genilib python
library for GENI, respectively as part of the cloud resource de-
ployment that are frequently used by our application commu-
nity (i.e., advanced manufacturing, bioinformatics). Addition-

10

Figure 7: Sequence diagram of all the steps involved in collection of requirements, composition & recommendation, deployment and adaptation/migration of a
custom template solution.

ally, it is possible to explore integration opportunities of gen-
eralized cloud API libraries such as libcloud, jcloud, and delta-
cloud for deploying heterogeneous cloud resources as mentioned
in Section 2 (Related Work). However, these open-source li-
braries face the same challenges in being up-to-date with the
dynamism in the cloud provider APIs and the inherent sustain-
ability issues handling legacy features. Fortunately, our ap-
proach is to be TOSCA compliant, which makes our imple-
mentation agnostic to cloud infrastructure changes. TOSCA
compliance allows us to have simpler application deployment
in popular cloud platforms that are TOSCA-compliant, and en-
ables multi-cloud deployments without any specific cloud provider
lock-in.

5.2. Sequence Diagram for Component Interactions
The sequence diagram in Figure 7 shows the chronologi-

cal events in the life cycle of a custom template as shown in
Figure 2. It begins with user interaction with KIS in order
to specify the application requirements to the recommendation
system. This, in response, presents the user with three templates
(‘green’, ‘red’ and ‘gold’) from the template service according
to cost, agility and performance preferences. These event se-
quences correspond to the offline initial recommendation phase.
Once the user submits the template information to the KIS, the
control comes back to the recommendation service. It sup-
plies this user-specified template configuration information to
the Deployment Service for implementing the user resource re-
quirements. The deployment service reserves the resources on
the selected cloud, and completes the install and configuration

steps for the new architecture with the necessary softwares. The
control for these newly allocated resources is now transferred to
the monitoring service with regular updates to the user.

After the deployment, if there are scaling rules defined by
the user then these rules trigger adaptation service. The Adap-
tation Service can take three different actions and correspond to
the online iterative recommendation explained in Algorithm 2.

The adaptation service ensures proper shut down and resets
previous resources from the prior allocated template. Finally,
the access credentials of the new resources are given to the user.
In all of the above cases, the monitoring service starts to collect
data with any kind of modification in the existing template. This
monitoring information is regularly updated to the adaptation
service to ensure stable performance that meets the user PAC
preferences.

The design of our initial KIS questionnaire and implementa-
tion of our middleware is based on our experience from working
on real-world use cases with bioinformatics community users
(e.g., SoyKB) [41] as well as advanced manufacturing com-
munity users (e.g., TotalSim) [43]. As noted earlier in Section
3.1, it is important for the KIS design to have a deep under-
standing of the underlying application community knowledge,
and requires close collaboration with the application commu-
nity. We worked closely with several community domain ex-
perts (both novice and expert users) and studied cloud provider
offerings to input pertinent rules into our policy database, and
populate an initial set of custom templates in our catalog for
use with our KNN algorithm. Any implementation that uses a

11

catalog faces a “cold start” issue, where early-on in the cata-
log creation, no solutions exist but over time many successfully
deployed solutions with corresponding resource benchmark in-
formation (i.e., application utility functions) are populated. For-
tunately, there already exists knowledge of the popular work-
flow requirements and templates of application-specific config-
urations in application communities via archived publications
and online documents. Hence, we were able to use a combi-
nation of already published literature and discussions with ap-
plication community collaborators to populate the catalog with
initial templates of application workflow deployment architec-
tures involving: (a) use of workspaces featuring virtual desk-
tops that host scientific software such as Paraview or Matlab,
(b) web services based packages to query databases to trans-
fer/analyze distributed data sets, (c) access to cloud resources
using application community-specific batch systems that are
widely used (e.g., SoyKB uses HTCondor/Pegasus [43]; To-
talSim uses SGE/OpenFOAM [41]).

6. Performance Evaluation

Implementing our custom template middleware can provide
seamless access to the users (novice and expert) to federated
cloud resources configured based on the requirements of the
data-intensive application. Particularly, users without technical
or cloud platform experience can easily interact with context-
aware questionnaire (KIS) and take advantage of our recom-
mendation scheme to provision the pertinent resources. Addi-
tionally, upon automated deployment of cloud resources, cre-
dentials will be sent to the users along with access instruc-
tions. This whole process reduces the resource provisioning
time drastically and removes guess work in cloud resource al-
location complexity, arising from manual approaches. In addi-
tion, users can save their previous successful solutions as cus-
tom templates in the catalog for portability and future purposes.

We are evaluating the middleware for custom template com-
position for resource allocation in four main steps. It begins
with the case study of private cloud architecture and a corre-
sponding cost-performance analysis. This is done to transform
a manufacturing industry simulation from a private cloud plat-
form to a public cloud platform. In the next part, we demon-
strate the benefits of the novel KIS with the use of a basic
knowledgebase about resource capabilities. The third set of re-
sults evaluate the recommendations for various grades of cost-
performance user requirements (‘green’, ‘red’ and ‘gold’). Fi-
nally, we quantify the accuracy of the questionnaire’s response
in meeting (both novice and expert) user requirements with re-
gards to identifying the ideal template.

6.1. Data-intensive Science Gateway Application Case Study

In this subsection, we present the effectiveness of our mid-
dleware implementation in the form of a case study for an ad-
vanced manufacturing of data-intensive science gateway appli-
cation [43]. Our case study pertains to a small-business ad-
vanced manufacturing company viz., TotalSim (located in Dublin,
OH) who integrated our custom template middleware solution

and provided their cloud resource requirements and pent-up
business development needs as input to the KIS. A model re-
quirement input is presented below:

• Highly available cluster infrastructure resources required
with support of batch processing execution

• Nodes require 2 cores with 4-8 GB RAM and 20 - 40 GB
storage and bandwidth of 10-15 Mbps

• Require high-throughput computing software framework
such as HTCondor available upon resource provisioning

• Require customized queuing software available on mas-
ter node upon resource provisioning (stored in Github
repository)

• Require binary files available on new cluster environment
(sources in Github repository)

• User Preference input for pDimension: The preference
feature selected is RAM Memory

Based on the requirements of this application collected us-
ing the rule based questionnaire approach shown in Figure 8,
we will analyze the trade-offs between cost, performance and
agility w.r.t. to the private and public cloud platforms. The mo-
tivation for workflow transformation from private resources to
a public cloud, as listed in Table 1, are well-established. How-
ever, we demonstrate that the addition of our middleware can
help private cloud resources to deliver automatic autoscaling of
compute resources in cost-effective manner.

6.1.1. Private Architecture
For initial exploration, application characterization for CPU

and RAM are presented in Figure 9. As compared to increase
in virtual cores, there is much significant drop in the execu-
tion time with the availability of larger RAM size as shown in
Figure 9 (a), which allows us to conclude that it is a memory-
intensive application. Obviously, the maximum performance
gain is observed on cumulative increase of both memory and
compute resources i.e., from 1 vCPU and 2 GB of RAM to 8
vCPUs and 32 GB of RAM. Figure 9 (b) shows that initially
the timing (y-axis) reduces by increasing the number of cores.
Although PR has 150 cores, the best performance is obtained by
using only 96 cores. Any addition in the core count beyond 96
cores causes the “law of diminishing returns” to become domi-
nant and the overheads increase due to the rise in the interpro-
cess communication costs. Hence, it is important to scale the
resources by matching them with the application requirements.
To correlate, similar execution time and cost scalability char-
acterization for different workloads for the public cloud (AWS)
are shown in Figure 9 (c). The AWS resources were deployed
using StarCluster, which is an open source cluster-computing
toolkit for Amazon Elastic Compute Cloud service. We use this
service in order to automate and simplify the process of build-
ing, configuring, and managing clusters of virtual machines on
Amazon EC2, suited for distributed and parallel computing ap-
plications and systems.

12

Table 1: Motivations for transformation of a workflow from a private resource to a public cloud

Task Private Resources Amazon AWS Resources
Collaboration Asynchronous i.e., using email, screenshots Synchronous i.e., WebEx on virtual desktop, cross-platform/device operation

Data storage & sharing Mailing DVDs and copying files with scp utility Cloud storage
- Dedicated VM with NFS volume attached to it

Network for data transfer Unreliable public Internet connection Amazon internal fast network for data transfer among the VMs and public
Internet for external transfer

Resource procurement Local cluster with limited resources Infinite number of EC2 VMs that can handle massive demand bursts
Pricing analysis Low cost but limited resources Medium/high cost but unlimited resources

Figure 8: KIS is a rule based web questionnaire that collects general data-intensive application information, network-connectivity, storage, computation resources
and software requirements. Based on users interaction with the KIS, an internal module (policy database) pre-populates fields with pertinent values to help users

decide whenever they are not sure about their inputs.

(a) (b) (c)

Figure 9: (a) Performance results with varying vCPUs and RAM for the private cloud, (b) Correlation between the runtime of the workflow and the number of CPUs
for the private cloud, (c) Corresponding performance and cost results for the public cloud. The initial recommended template computed the WheelSim workflow in
52.7 hours with a cost of $19.58. However, once the monitoring engine detected an over-provisioning of resources, the middleware recommended a second template
that computed the workflow in 47.44 hours with a cost of $13.43. The recommendation process continues until it minimized the computation time and cost.

6.1.2. Rule Based Questionnaire Implementation
The focus of the experiments in our prior work [8] was on

a single VM deployment as we considered a basic question-
naire for novice and expert user. In this paper, we are extending
the work scope by recommending an overall solution template
with multiple cloud resource requirements. Thus, we do not
just limit our recommendations to a single or isolated cloud re-
source, but also consider heterogeneous resources from multi-
ple cloud infrastructures that are potentially suited for our data-
intensive science gateway application requirements. In order to
achieve this objective, the questionnaire is updated with sup-
plementary steps to elicit additional information on the archi-
tecture, topology, and other considerations. Details about these
related parameters are specified in Table 2. We have compiled
this list of information based on our previous work with the ad-

vanced manufacturing application collaborator [43].
It was not straightforward process to make the requirement

elicitation process user-friendly, complete and consistent, as the
new questions have imparted complexity to the original ques-
tionnaire. In that direction, our main idea is to be able to pre-
dict the best possible choice for the infrastructure requirements
as the user goes through a series of questions with typically
binary answers (yes/no) for requirement elicitation about their
application. The answers to these enquiries are used to populate
the parameters which can be translated to features which are in-
turn used to make the infrastructure decisions. Our rule based
context-aware method allows us to efficiently interact with the
users adjusting the inquiry flow according to user’s comprehen-
sion level of cloud infrastructure and application requirement.
In other words, users with performance-optimization goals will

13

Table 2: Comprehensive view of Novice vs Expert User Requirement for Reserving Custom Template

Template Parameters Exact Information Partial Information Minimalistic Information
RAM (Memory) 10 GB 6 GB 6 GB
CPU Cores 2
CPU Frequency 2 GHz
OS (Type, Platform, Version) Unix-type, CentOS 6 Unix-type, CentOS Unix-type
Linux Server OS availability CentOS CentOS
Windows Server OS availability No No
Storage 50 GB 30 GB
Number of VM Instances 1 1
Required network topology No No
Application Type Memory-intensive Memory-intensive Memory-intensive
Physical location of resource Ohio Ohio
Type of connectivity to remote resources Layer 2
Network bandwidth Mbps (within the data center) 100 Mbps
Network bandwidth Mbps (from data center to private resources) 50 Mbps
Type of resources Virtual Desktop Virtual Desktop Virtual Desktop
Type of cost per instance per execution per execution
Type of cost per storage per GB per GB
Capacity of master node different from slaves? No No No
If different master node specs better than slaves? No No No
GPU Requirement Yes Yes Yes

go through a separate set of questions, as compared to price-
concerned application-owner. As the number of interactions
increases and the knowledgebase maturity grows, the questions
will increase in specificity and cover advanced concepts. Ex-
pert users interacting with our context-aware questionnaire are
expected to supply closer to exact requirements and hence get
better (custom template) recommendations as compared to the
novice users. It can be foreseen that the novice user will have
lower engagement with the questionnaire and so the recom-
mender will suggest suitable templates with minimal interac-
tions with the same set of questions.

6.1.3. Cloud Architecture Transformation
To analyze the private to public cloud transformation we

compare their price versus performance metrics. We began
with publicly available CSP resources data such as Amazon re-
sources: m3.2xlarge (A-M3), m2.4xlarge (A-M2), r3.4xlarge
(A-R3) and r3.8xlarge (A-R8), and private resources used by
the Manufacturing company such as: Ruby (PR-R), Oakley
(PR-O) and Glenn (PR-G). Figure 9 (c) shows the results of
our middleware implementation. It is divided in two sections,
for private architecture and AWS resources, sorted by execution
time and cost. The reason of having any resources included as
a potential solution will depend on the user priority established
for the particular application. A detail explanation is shown in
Figure 10, where the same type of resources present different
ranking depending on the preference such as: Resources avail-
ability, Computation time and Cost.

Availability metric represents a numerical score of the user’s
ability to reserve the suited resource (diversity and amount) as
necessitated for an application during a specific resource de-
mand period. Multiple applications typically compete for the
same resource units in a private cloud, which lowers this score
for a PR in comparison with a public cloud. In Figure 10 (a),
this score is calculated for the WheelSim application by aver-
aging all the past data corresponding to when the resources are
available for user allocation. Public cloud has unlimited avail-
ability given their elastic resource characteristics to meet user

demands. Hence, they are assigned 100% values for the avail-
ability calculations.

Some of the cloud resource requirements (RAM, Storage
Size and Bandwidth) specified in Section presented range val-
ues. Consequently, boundaries are established through vectors
(Vmin and Vmax) and the reqVector is constructed with Vmid vec-
tor. Some of the vector values are: Vmin = (2, 4, 20, 10), Vmid =
(2, 6, 30, 12.5) and Vmax = (2, 8, 40, 15). we use the evaluation
metric, Resource Demand in this set of experiments. This met-
ric is defined as the amount of resources needed for different
templates.

Our recommender scheme matches this requirement with
different CSP capabilities and presents the available resources
to the user for science gateway application deployment. Once
the user selects one of the proposed solutions (i.e., among the
‘green’, ‘gold’ and ‘red’ options), the infrastructure is deployed
and pre-configured with all the necessary software using our
Deployment Engine that uses technologies such as Docker. Cre-
dentials along with instructions to access the new infrastructure
are made available for the user. Once this process is done, the
solution template is stored in the catalog for future reuse.

In order to demonstrate the effectiveness of the pDimen-
sion variable, we perform two experiments using the advanced
manufacturing application implementation. In the first experi-
ment, all resources have the same priority, hence a pDimension
was not defined. However, for the second experiment, ‘RAM’
was selected for pDimension. From Figure. 11 (a), we can ob-
serve that the pDimension variable affects the output results
because the candidate templates differ in the number of rec-
ommended resources (i.e., in the Resource Demand). Results
in Figure. 11 (b) show that the cloud resources are out of the
boundaries. However, results in Figure. 11 (a) show candidate
templates are found to be within the upper and lower boundaries
as well as those that are close to the upper boundary. Majority
of our experiments reveal an interesting phenomenon related to
the cost, where the ‘green’ template generally incurs high cost
and the associated vector is close to the upper bound. Moreover,
the ‘gold’ template (template with the highest values based on

14

(a) (b) (c)

Figure 10: We executed the WheelSim application over 7 different instances types from 2 different cloud resources (private resources (PR) and public cloud resources
(AWS)). Values in X-axis correspond to the abbreviation of the type of instance utilized for the experiments. Generated data is plotted based on three parameters:
(a) Availability, where PR present limited availability over AWS, (b) Computation time, that takes into the account the time needed to transfer processed data from
remote to private location, where private resources present lower computation time and AWS higher computation time, transfer time for a 15 GB file in the case of
PR-R, PR-O, PR-G, A-M3, A-M2, A-R3 and A-R8 is 25, 25, 25, 53, 53, 53, 40 minutes, respectively, (c) Total cost, where some private resources i.e., GENI with
PR-R and PR-O present a lower cost in comparison to using AWS.

(a) (b)

(c) (d)

Figure 11: Accuracy for recommended results: (a) This figure presents results based on Figures. 5 and 6 of work done in [26], where the recommender schema
present a maximum accuracy value of 71% ; (b) Present our middleware results based on four different input data: Novice that represents Requirements Without
Preference), Novice (P) that represents: Requirements With Preference, Expert that represents: Requirements Without Preference and Expert (P) that represents
Requirements With Preference. The maximum accuracy obtained is 92%. The reqVector presents the following requirements: 2 Cores, RAM memory between 4
and 8, Storage capability between 20 and 40 GB and bandwidth between 10 and 15 Mbps. Gold, green and red templates are presented as candidate solution with
normalized values. (c) pDimension is not specified hence some templates are out of the boundaries; (d) pDimension for RAM Memory resource is specified, hence
all templates tend to be close to the RAM upper bound, and all templates are inside the ranges.

RAM pDimension) incurs lower cost in comparison with the
‘green’ and higher cost than the ‘red’. Finally, the ‘red’ tem-
plate that presents the lowest cost, as well as the vector, is close
to the lower bound.

6.2. Experiments and Results Discussion

6.2.1. Recommendation System
For our evaluation experiments, we used AWS resources.

We setup a testbed with distributed heterogeneous resources

that can be discovered and configured by our recommendation
scheme using the AWS API capability. To mimic the different
data centers, we considered different zones that are distributed
across many cities.

To evaluate our middleware utility, we use a Resource Pro-
vision Accuracy metric, which we define as the similarity of
cloud resources presented in templates, versus the similarity of
the cloud resources in requirements of data-intensive applica-
tions. We evaluate the accuracy of our recommendation sys-

15

(a) (b)

Figure 12: (a) Percentage of user requests satisfied vs number of missing attributes. The percentage of user receiving recommendations closer to the ideal solution
decreases as the number of missing attributes increases. In addition, while keeping the number of requests constant and increasing the number of templates in
the catalog, there is a reduction in the percentage of identifying the ideal solution template. (b) Euclidean distance between the ideal solution and the template
recommended by varying the number of missing input parameters.

tem by considering resource requirement boundaries created
based on reqVector. The boundaries are calculated based on
the input ranges selected by the users at the time of choos-
ing cloud resources through the KIS (e.g., required bandwidth
range: 10 - 15 Mbps). This information is used to create addi-
tional boundary vectors. Vmin is the lower bound of the require-
ments, Vmax is the upper bound of the user requirements and
Vmid is the vector constructed using the mid-values for the fea-
tures. We test our recommendation system with generated data
for 60 user requirement requests. We implement our recom-
mendation scheme for 30 novice users (users who do not pro-
vide enough information to the KIS) and 30 expert users (who
completed most or all fields in the KIS). The recommendation
scheme is also evaluated by considering users who explicitly
specified pDimension variable (resource preference selection)
and users who did not specify any preference (all resources
have equal importance). Finally, we compare our results with
a prior scheme detailed in [26] that also has a recommendation
approach as mentioned in Section 2.

Figure 11 (c) shows results obtained with our scheme which
clearly presents improved results in comparison with Figure 11
(d). Results in Figure 11 (c) are cataloged in different groups
that correspond to novice and expert users. Within those cate-
gories there are two sub-categories which represent users who
consider all resources with the same importance and users that
explicitly set a pDimension to determine preference or priority
of some resource component. Results for novice users show
that our recommender scheme achieves nearly 58% accuracy
when pDimension is not applied and 71% accuracy when pDi-
mension is applied. pDimension represents an improvement
of nearly 13%. Similarly, results for expert users show that
our recommender scheme achieves nearly 78% accuracy when
pDimension is not applied and 92% when pDimension is ap-
plied. pDimension represent an improvement of 14%. Overall
our recommender scheme accuracy depends on the user input
and accuracy is high when the user has some level of cloud
knowledge or experience, and accuracy is low otherwise. Also,
pDimension effectively targets resources based on the resource
priority specified.

6.2.2. Novice versus Expert User Questionnaire Response
In this section, we will evaluate the effectiveness of our

recommendation system for a novice versus expert user with
the existing information from previous users that is available in
form of the knowledgebase. In order to design an automated,
consistent and effective requirement elicitation process, it is im-
portant to understand how the prediction accuracy changes with
the modification in the missing parameters, minimum number
of requirements to obtain consistent decision-making and espe-
cially how most-influential features will influence several other
features. The premise of the problem is that the user (especially
the novice type) has a partial knowledge about their application
requirements and even lesser hardware/software understanding
and how it can be matched to the existing CSP infrastructure ca-
pabilities. Even the expert user may not have a complete knowl-
edge about parameters and their correlation with complete pic-
ture of cost, agility and performance factors. Finally, we sup-
port our design by the evaluation results from simulations over
a large number of user requests with different template sizes.

The evaluation of our recommender system is extended by
quantifying its ability to provide solutions for the novice user
requests with respect to the ideal template. Since the novice
user has an incomplete information on the requirements for the
application and cloud features, their requests usually have miss-
ing responses about the infrastructure parameters in the ques-
tionnaire as shown in the Table 2. Hence, it is important to
conduct a systematic experimentation to gauge the extent of ac-
curacy errors as the amount of missing values increases. For
this purpose, we are simulating the requirement elicitation with
20 input parameters with about hundred user request and ran-
domly modifying the number of missing values and the tem-
plates stored in the catalog. The ideal template is predefined as
the one that is recommended to a particular user request with
all the input parameters correctly supplied to the recommender
system. As per the actual scenario, attributes for each user re-
quest will be matched with the existing custom templates in the
catalog. For the same user request, we are systematically de-
ducting the random number of input parameters to simulate the
impact of the missing values and use Euclidean distance with
the KNN algorithm to identify the template in the catalog clos-

16

est to the user request. Obviously, accuracy improves if there
are higher number of matches. For a constant number of miss-
ing values, we are calculating the error using the equation given
below:

S UR =

Maxiterations=100∑
i=1

CMi
URi

MaxIteration
x100.

(3)

where,
SUR = Percentage of Satisfied User Requirements,
CMi = Num. of correctly matching templates in i-th iteration,
URi = Num. of user request in i-th iteration.

This experiment has been repeated for 10 different user re-
quests over 100 times and recorded as the percentage of user re-
quests that get Ideal Templates as shown in Figure 12 (a). The
result confirms the intuitive phenomenon that as the informa-
tion given to the recommender system decreases, there is lesser
likelihood that the user receives the correct recommendation
(about 75% drop in the accuracy for 10 templates). Another
significant indicator to denote the disparity between the user
requests and the ideal template selection is the Euclidean dis-
tance between them as shown in Figure 12 (b). The simulation
conditions are described earlier and they display similar behav-
ior with the distance metric showing about 2.25 times increase
just for 10 templates, and results would be consistent (with am-
plification factors) for greater number of templates in a given
catalog. The simulation space is scaled further to understand
the impact on the percentage of the satisfied user requests as
the catalog matures, thereby increasing in the number of saved
templates. This is represented by the three different catalog
sizes in Figure 12 (a) and (b) with template sizes as 10, 50 and
100. The observed results show that having multiple options
available in the catalog does not necessarily improve the recom-
mendation accuracy, as it falls with the increase in the number
of templates in the catalog. In fact, even the best results have
a substantial drop from 74.1% to 54% (with 2 missing parame-
ters) in Figure 12 (a). This can be explained by the fact that the
recommender has to work against the increased (catalog) space
complexity.

7. Conclusion

In this paper, we presented that there are substantial bar-
riers and a clear lack of scientific approaches and middleware
solutions to help users of data-intensive applications to effec-
tively deploy heterogeneous distributed cloud resources. We
designed a user-friendly interface (KIS) to overcome limita-
tions of reusability of previously successful configurations of
resource provisioning for similar applications, thus demonstrat-
ing proper abstractions. Particularly, we described the imple-
mentation of a custom template catalog (i.e., our recommenda-
tion scheme contribution) that recommends configuration solu-
tions for requirements of different applications, which in turn
could lead to effectively utilize time and effort in provisioning
heterogeneous resources for novice and expert users. The pre-
sented custom template middleware (i.e., our implementation
for a real-world application, code openly available in GitHub

at [40]) was evaluated through two experiment scenarios that
involved simulation of novice beginner and expert interactions
with the KIS. Results of the evaluation show that our scheme
can obtain up to 71% accuracy for novice users, and up to 92%
accuracy for expert users, thus a net improvement of 21% accu-
racy, compared to an existing recommendation scheme [26].

Our middleware also enables a provisioned heterogeneous
cloud resource to be adapted and refined automatically after
its provisioning in an online manner. We have designed an
online iterative recommendation scheme with varying granu-
larity of template modification (i.e., fine-grained and coarse-
grained) to cover the possible performance disparity. We con-
ducted a trade-off analysis between cost and performance for
private to public cloud transformation for an advanced manu-
facturing science gateway to show that private clouds can pro-
vide cost-effective faster service solutions based on a selected
custom template configuration. We also verified with simula-
tion results that the maturity evaluation for novice and expert
user with improvements in the accuracy of about 75% for 10
templates, and results would be consistent (with amplification
factors) for greater number of templates in a given catalog.

Future work could involve enabling the questionnaire (con-
tent and flow) to be very close to the dynamic user-expert in-
teraction. Thus, its parameters can be changed to multiple pa-
rameters mapping to particular CSP infrastructure features. The
middleware could also enable rapid monitoring and sharing of
performance data over larger group of templates to facilitate the
needs of a user community. Lastly, our work could be extended
to a number of other real-world applications to benefit data-
intensive user communities in various science and engineering
disciplines such as bioinformatics and neuroscience.

Acknowledgements

This work was supported by the National Science Founda-
tion under awards: ACI-1246001, ACI-1245795, ACI-1440582
and CNS-1429294, and Cisco Systems. Any opinions, findings,
and conclusions or recommendations expressed in this publica-
tion are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation or Cisco Systems.

References

[1] A. Hanemann, J. Boote, E. Boyd, J. Durand, L. Kudarimoti, R. Lapacz, D.
Swany, S. Troche, J. Zurawski, “perfSONAR: A Service Oriented Archi-
tecture for Multi-Domain Network Monitoring”, Proc. of Intl. Conference
on Service-Oriented Computing (ICSOC), 2005.

[2] R. Morgan, S. Cantor, S. Carmody, W. Hoehn, K. Klingenstein, “Federated
Security: The Shibboleth Approach”, EDUCAUSE Quarterly, 27(4):12-
17, 2004.

[3] R. Bazan Antequera, P. Calyam, S. Debroy, L. Cui, S. Seetharam, M. Dick-
inson, T. Joshi, D. Xu, T. Beyene, “ADON: Application-Driven Overlay
Network-as-a-Service for Data-Intensive Science”, IEEE Transactions on
Cloud Computing, 2017.

[4] D. Jagli, S. Yeddu, “CloudSDLC: Cloud Software Development Life Cy-
cle”, Intl. Journal of Computer Applications, Vol. 168, No. 8, 2017.

[5] R. Schmidt, S. Grarup, “vApp: A Standards-based Container for Cloud
Providers”, ACM SIGOPS Operating Systems Review, 44(4):115-123,
2010.

[6] M. Berman, J. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaudhuri,
R. Ricci, I. Seskar, “GENI: A federated testbed for innovative network
experiments”, Elsevier Computer Networks, 61(1):5-23, 2014.

17

[7] “Amazon Web Services: on-demand public computing platform”; https:
//aws.amazon.com

[8] R. Bazan, P. Calyam, A. Ankathatti, S. Malhotra, “Recommending Re-
sources to Cloud Applications based on Custom Templates Composition”,
Proc. in ACM Computing Frontiers Conference, 2017.

[9] Terraform - Write, Plan, and Create Infrastructure as Code; https://
www.terraform.io/

[10] A. Botea, M. Muller, J. Schaeffer, “Using Component Abstraction for Au-
tomatic Generation of Macro-Actions", Proc. of Intl. Conference on Auto-
mated Planning and Scheduling (ICAPS), pp. 181-190, 2004.

[11] G. Wei, X. Zhong-Wei, X. Ren-Zuo, “Metrics of Graph Abstraction
for Component-Based Software Architecture", Proc. of the WRI World
Congress on Computer Science and Information Engineering, 2009.

[12] H. Zheng, H. Yao, T. Yoneda , “Modular Model Checking of Large Asyn-
chronous Designs with Efficient Abstraction Refinement", IEEE Transac-
tions on Computers, 59(4):561-573, 2010.

[13] Y. Wang, “A hierarchical abstraction model for software engineering”,
Proc. of the International workshop on The role of abstraction in software
engineering, pp. 43-48, 2008.

[14] H. Qian, H. Zu, C. Cao, Q. Wang, “CSS: Facilitate the cloud service
selection in IaaS platforms”, Proc. of Intl. Conference on Collaboration
Technologies and Systems (CTS), 2013.

[15] T. Zain, M. Aslam, M. R. Imran, “Cloud Service Recommendation Sys-
tem Using Clustering”, Proc. of Intl. Conference on Electrical Engineer-
ing, Computing Science and Automatic Control (CCE), 2014.

[16] M. Zhang, R. Ranjan, A. Haller, D. Georgakopoulos, and P. Strazdins,
“Investigating decision support techniques for automating Cloud service
selection”, Proc. of IEEE Intl. Conference on Cloud Computing Technol-
ogy and Science (CloudCom), 2012.

[17] B. Zilci, M. Slawik, A. Kupper, “Cloud Service Matchmaking using Con-
straint Programming”, Enabling Technologies: Infrastructure for Collabo-
rative Enterprises (WETICE), 2015.

[18] L. Liu, X. Yao, L. Qin, “Ontology-based Service Matching in Cloud Com-
puting”, Proc. of IEEE Intl. Conference on Fuzzy Systems, 2014.

[19] S. Sundareswaran, A. Squicciarini, D. Lin, “A Brokerage-Based Ap-
proach for Cloud Service Selection”, Proc. of IEEE Intl. Conference on
Cloud Computing (CLOUD), 2012.

[20] M. Singhal, J. Ramanathan, P. Calyam, M. Skubic, “In-the-know: Rec-
ommendation Framework for City-supported Hybrid Cloud Services”,
Proc. of IEEE/ACM Intl. Conference on Utility and Cloud Computing
(UCC), 2014.

[21] Z. Rehman, F. Hussain, O. Hussain, “Towards Multi-Criteria Cloud Ser-
vice Selection”, Proc. of Intl. Conference on Innovative Mobile and Inter-
net Services in Ubiquitous Computing (IMIS), 2011.

[22] Z. Gui, C. Yang, J. Xia, Q. Huang, K. Liu, Z. Li, M. Yu, M. Sun, N.
Zhou, B. Jin, “A Service Brokering and Recommendation Mechanism for
Better Selecting Cloud Services”, PLoS ONE (Public Library of Science),
9(8):e105297, 2014.

[23] AWS CloudFormation - Infrastructure as Code & AWS Resource
Provisioning; https://aws.amazon.com/cloudformation/
details/#designer

[24] “Cisco UCS Director - automates, orchestrates, and manages Cisco
and third-party hardware; http://www.cisco.com/c/en/us/
products/servers-unified-computing/ucs-director

[25] R.Qasha, J. Cala, P. Watson,“Towards Automated Workflow Deployment
in the Cloud using TOSCA” Proc. of IEEE Intl. Conference on Cloud Com-
puting (CLOUD), 2015.

[26] S. Soltani, P. Martin, K. Elgazzar, “QuARAMRecommender: Case-Based
Reasoning for IaaS Service Selection”, Proc. of Intl. Conference on Cloud
and Autonomic Computing (ICCAC), 2014.

[27] C. Horuk, G. Douglas, A. Gupta, C. Krintz, et. al., “Automatic and
portable cloud deployment for scientific simulations”, Proc. of IEEE
HPCS, 2014.

[28] J. Kirschnick, J. Alcaraz, L. Wilcock, N Edwards, “Toward an architec-
ture for the automated provisioning of cloud services”, IEEE Communica-
tions Magazine, 2010.

[29] T. Nielsen, C. Iversen, P. Bonnet, “Private Cloud Configuration with
MetaConfig”, Proc. of IEEE International Conference on Cloud Comput-
ing (CLOUD), 2011.

[30] Puppet - Utility to manage IT infrastructure as code across all environ-
ments; https://puppetlabs.com

[31] D. Merkel, “Docker: lightweight linux containers for consistent develop-
ment and deployment”, Linux Journal, 239(2), 2014.

[32] C. Boettiger, “An introduction to docker for reproducible research”, ACM
SIGOPS Operating Systems Review - Special Issue on Repeatability and
Sharing of Experimental Artifacts archive, 49(1):71-79, 2015.

[33] M. Thanh, N. Quang-Hung, M. Nguyen, N. Thoai, “Using Docker in High
Performance Computing Applications”, Proc. of IEEE Intl. Conference on
Communications and Electronics (ICCE), 2016.

[34] R. Qasha, J Cala, P. Watson, “A Framework for Scientific Workflow Re-
producibility in the Cloud”, Proc. of 12th IEEE Intl. Conference on e-
Science, 2016.

[35] I. Giannakopoulos, N. Papailiou, C. Mantas, I. Konstantinou, D.
Tsoumakos†, N. Koziris, “CELAR: Automated Application Elasticity Plat-
form” Proc. of IEEE Intl. Conference on Big Data (Big Data), 2014.

[36] Apache Cloud - a standard Python library that interfaces with multiple
cloud providers; http://libcloud.apache.org

[37] Apache jCloud - an open source multi-cloud toolkit; http://
jclouds.incubator.apache.org

[38] Delta-Cloud - comprises of an API server and drivers necessary for con-
necting to cloud providers; http://deltacloud.apache.org

[39] Cloudify - Cloud & NFV Orchestration Based on TOSCA; http://
cloudify.co

[40] Custom Template Middleware - Openly accessible Github repository;
https://github.com/acarjungowda/CustomTemplate_
Recommender

[41] Y. Liu, S. Khan, J. Wang, M. Rynge, Y. Zhang, S. Zeng, S. Chen, J.
Maldonado, B. Valliyodan, P. Calyam, N. Merchant, H. Nguyen, D. Xu,
T. Joshi, “PGen: Large-Scale Pegasus Workflow for Genomic Variation
Analysis in SoyKB”, BMC Bioinformatics, 2016.

[42] X. Amatriain, A. Jaimes, N. Oliver, J. M. Pujol, “Data Mining Methods
for Recommender Systems”, Springer, Recommender Systems Handbook,
2010.

[43] A. Akula, P. Calyam, R. Bazan, R. Leto, “Advanced Manufacturing Col-
laboration in a Cloud-based App Marketplace”, Proc. of ACM Computing
Frontiers Conference, 2017.

Ronny Bazan Antequera received
his MS degree in Computer Science
from University of Missouri, Columbia
in 2014. He received his BS degree in
Computer Science from San Andres Uni-
versity, Bolivia. He is currently pur-
suing his Ph.D. degree in the Depart-
ment of Electrical Engineering and Com-
puter Science at University of Missouri-
Columbia. His current research interests include Hybrid Cloud
Computing, Network Security and Software-defined Network-
ing.

Prasad Calyam received his MS
and PhD degrees from the Department
of Electrical and Computer Engineering
at The Ohio State University in 2002
and 2007, respectively. He is currently
an Associate Professor in the Depart-
ment of Electrical Engineering and Com-
puter Science at University of Missouri-
Columbia. Previously, he was a Re-
search Director at the Ohio Supercomputer Center. His cur-
rent research interests include Distributed and Cloud Comput-
ing, Computer Networking, and Cyber Security. He is a Senior
Member of IEEE.

18

https://aws.amazon.com
https://aws.amazon.com
https://www.terraform.io/
https://www.terraform.io/
https://aws.amazon.com/cloudformation/details/#designer
https://aws.amazon.com/cloudformation/details/#designer
http://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-director
http://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-director
https://puppetlabs.com
http://libcloud.apache.org
http://jclouds.incubator.apache.org
http://jclouds.incubator.apache.org
http://deltacloud.apache.org
http://cloudify.co
http://cloudify.co
https://github.com/acarjungowda/CustomTemplate_Recommender
https://github.com/acarjungowda/CustomTemplate_Recommender

Arjun Ankathatti Chandrashekara
received his BS degree in Computer
Science from Sri Siddharatha Univer-
sity, Bengaluru, India. He is currently
pursuing his MS degree in the Depart-
ment of Electrical Engineering and Com-
puter Science at University of Missouri-
Columbia. His current research inter-
ests include Cloud Computing, Recommenders, Expert Sys-
tems and Cognitive UI development.

Reshmi Mitra is a Post-doctoral
Fellow in the Department of Electri-
cal Engineering and Computer Science
at the University of Missouri-Columbia.
She received her MS and PhD degrees
in Electrical and Computer Engineering
from University of North Carolina at
Charlotte in 2007 and 2015, respectively.
Previously she has worked in National
Institute of Technology India, Advanced Micro Devices Austin
and Samsung Austin R&D Center. Her research interests in-
clude Interactive and Cognitive Cloud Computing and Perfor-
mance Modeling.

19

	Introduction
	Related Work
	Expression and abstraction of user requirements
	Cloud service matching and recommendation
	Automated resource provisioning frameworks

	Component Abstraction Model
	Collection
	Application Requirement Identifier
	Resource Space
	Macro Operators

	Composition
	Custom Template
	Catalog
	Policy Database

	Consumption

	Recommendation Scheme
	Overview
	Offline Initial Recommendation
	Online Iterative Recommendation

	Application Workflow Integration
	Application Architecture and Implementation Design
	Sequence Diagram for Component Interactions

	Performance Evaluation
	Data-intensive Science Gateway Application Case Study
	Private Architecture
	Rule Based Questionnaire Implementation
	Cloud Architecture Transformation

	Experiments and Results Discussion
	Recommendation System
	Novice versus Expert User Questionnaire Response

	Conclusion

